64 research outputs found

    Does Adiponectin Act as an Antiangiogenic Factor in B-Cell Chronic Lymphocytic Leukemia?

    Get PDF
    Angiogenesis is involved in the pathogenesis of B-cell chronic lymphocytic leukemia (CLL), and high microvascular density has been found in CLL to be associated with a poor prognosis. In this study, we assessed serum levels of adiponectin in 69 patients with Binet stage A B-CLL, and these values were retrospectively correlated with bone marrow (BM) microvessel area and serum levels of vascular endothelial growth factor (VEGF), fibroblast growth factor-2 (FGF-2), angiogenin, PECAM-1 (CD31), matrix metalloproteinase-9 (MMP-9), interleukin-8 (IL-8), syndecan-1, and the percentage of CD38+ or ZAP-70+ CLL cells. The positive correlation between serum levels of adiponectin and VEGF (P = .03) does not translate into an increase of the extent of BM angiogenesis (P = .404), FGF-2 (P = .348), angiogenin (P = .402), and CD31 (P = .248) serum concentrations. Accordingly, IL-8 (P = .175), syndecan-1 (P = .06), and MMP-9 (P = .144) circulating levels were not likely to reflect adiponectin concentration. Furthermore, patients with higher levels of adiponectin had a more favorable biological profile as defined by a lower number of both CD38− (r = −0.294; P = .02) and ZAP-70+ (r = −0.285; P = .04). Finally, we evaluated the presence of adiponectin in B-CLL cells at gene expression level. RMA intensity values for adiponectin gene transcript denote a homogeneous low expression in B-CLL cells, whereas VEGF transcript was highly expressed with a degree of interpatient variability. Overall, these data seem to indicate that adiponectin could be involved as an antiangiogenic factor in B-CLL

    The Effects of 1-Hz rTMS on Emotional Behavior and Dendritic Complexity of Mature and Newly Generated Dentate Gyrus Neurons in Male Mice

    Get PDF
    Low-frequency repetitive transcranial magnetic stimulation (1-Hz rTMS) is a promising noninvasive tool for the treatment of depression. Hippocampal neuronal plasticity is thought to play a pivotal role in the pathophysiology of depressive disorders and the mechanism of action of antidepressant treatments. We investigated the effect of 1-Hz rTMS treatment on hippocampal dentate gyrus structural plasticity and related emotional behaviors modifications. Experimentally, adult male mice received either five days of 1-Hz rTMS or Sham stimulation. After stimulation, the mice underwent a battery of tests for anxiety-like and depression-like behaviors. We also tested the effect of treatment on mature and newly generated granule cell dendritic complexity. Our data showed that 1-Hz rTMS induced structural plasticity in mature granule cells, as evidenced by increased dendritic length and number of intersections. However, the stimulation did not increase the proliferation of the dentate gyrus progenitor cells. On the contrary, the stimulated mice showed increased dendritic complexity of newly generated neurons. Moreover, 1-Hz rTMS resulted in antidepressant-like effects in the tail suspension test, but it did not affect anxiety-like behaviors. Therefore, our results indicate that 1-Hz rTMS modulates dentate gyrus morphological plasticity in mature and newly generated neurons. Furthermore, our data provide some evidence of an association between the antidepressant-like activity of 1-Hz rTMS and structural plasticity in the hippocampus

    High-frequency rTMS modulates emotional behaviors and structural plasticity in layers II/III and V of the mPFC

    Get PDF
    Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive neuromodulation technique, and it has been increasingly used as a nonpharmacological intervention for the treatment of various neurological and neuropsychiatric diseases, including depression. In humans, rTMS over the prefrontal cortex is used to induce modulation of the neural circuitry that regulates emotions, cognition, and depressive symptoms. However, the underlying mechanisms are still unknown. In this study, we investigated the effects of a short (5-day) treatment with high-frequency (HF) rTMS (15 Hz) on emotional behavior and prefrontal cortex morphological plasticity in mice. Mice that had undergone HF-rTMS showed an anti-depressant-like activity as evidenced by decreased immobility time in both the Tail Suspension Test and the Forced Swim Test along with increased spine density in both layer II/III and layer V apical and basal dendrites. Furthermore, dendritic complexity assessed by Sholl analysis revealed increased arborization in the apical portions of both layers, but no modifications in the basal dendrites branching. Overall, these results indicate that the antidepressant-like activity of HF-rTMS is paralleled by structural remodeling in the medial prefrontal cortex

    GraphCast: Learning skillful medium-range global weather forecasting

    Full text link
    We introduce a machine-learning (ML)-based weather simulator--called "GraphCast"--which outperforms the most accurate deterministic operational medium-range weather forecasting system in the world, as well as all previous ML baselines. GraphCast is an autoregressive model, based on graph neural networks and a novel high-resolution multi-scale mesh representation, which we trained on historical weather data from the European Centre for Medium-Range Weather Forecasts (ECMWF)'s ERA5 reanalysis archive. It can make 10-day forecasts, at 6-hour time intervals, of five surface variables and six atmospheric variables, each at 37 vertical pressure levels, on a 0.25-degree latitude-longitude grid, which corresponds to roughly 25 x 25 kilometer resolution at the equator. Our results show GraphCast is more accurate than ECMWF's deterministic operational forecasting system, HRES, on 90.0% of the 2760 variable and lead time combinations we evaluated. GraphCast also outperforms the most accurate previous ML-based weather forecasting model on 99.2% of the 252 targets it reported. GraphCast can generate a 10-day forecast (35 gigabytes of data) in under 60 seconds on Cloud TPU v4 hardware. Unlike traditional forecasting methods, ML-based forecasting scales well with data: by training on bigger, higher quality, and more recent data, the skill of the forecasts can improve. Together these results represent a key step forward in complementing and improving weather modeling with ML, open new opportunities for fast, accurate forecasting, and help realize the promise of ML-based simulation in the physical sciences.Comment: Main text: 21 pages, 8 figures, 1 table. Appendix: 15 pages, 5 figures, 2 table
    corecore